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TABLE 3. Average Slope of Phase Boundary for Various Orientations of the Crystal to the Axis of 
Compression 

Selection of Data 

All 
Excluding runs 580 & 590 
P = 3 kb 

..LG 

10.3 ± 0.7t 
10.6 ± 0.4 
10 .6 ± 0.4 

* u > 0 for compression in this table. 

aT a-/liau*, °C/kb 

IIG 

5.0 ± 0.3 
5.0 ± 0.3 
5.0 ± 0.4 

o 

7.3 ± 0.1 
7.3 ± 0.1 
7.3 ± 0.1 

9.1 ± 0 .5 
9 . 1 ± 0.5 
9.1 ± 0.5 

t The uncertainty listed after each slope is either the standard deviation of the mean calculated from 
the different slopes, s.d. = 0::::. [(aT / au), - «aT/au))p!n - 1)1/2 or the average standard deviation 
calculated from the individual standard deviations of the slopes, s.d. = 0:, (s.d.),2In)I/., whichever is 
larger. 

phine twins. The standard deviation of the 
mean of the slopes for a given orientation, how­
ever, is not seriously large. 

4. There is clear indication of a hysteresis 
in the a-{3 transition, for the {3 ~ a boundary 
is systematically lower than the a ~ {3 bound­
ary for all orientations and conditions of stress. 
Giving more emphasis to lines that are more 
nearly parallel and more precisely determined 
by the experimental points, a weighted mean 
value for the hysteresis at zero compressive 
stress is estimated to be 1.6 ± 0.9°C. This is 
consistent with the 1°-2°C observed by Keith 
and Tuttle [1952] in homogeneous single quartz 
crystals at atmospheric pressure. (In estimat­
ing the mean intercepts in Table 2, 0.8 ± 
0.9°e has therefore been added to Tp_>. ° for 
those few runs in which the a ~ {3 phase 
boundary was not determined.} 

By far the most interesting result of this 
study is that the slope of the phase boundary 
aT._plau depends strongly on the orientation 
of the crystal with respect to the axes of com­
pression (Table 3). Regarclless of whether all 
the data at all pressures or selected data at 
P = 3 kb are averaged, the conclusion is essen­
tially the same: the transition temperature is 
raised about 10.6°C for each kilobar of com­
pressive stress perpendicular to the C axis and 
only 5.0°C/ kb parallel to the C axis. 

When extrapolated to zero compressive 
stress, the results of these experiments are in 
good agreement with existing hydrostatic data. 
This is demonstrated in Figure 7, where the 
mean temperature intercept (last column of 

Table 2) is plotted versus hydrostatic pressure 
(or mean pressure for hollow samples, as dis­
cussed later in the text). The least-squares slope 
and temperature intercept of the phase bound­
ary in P-T space are 25.83 ± 0.06°C/kb and 
573.6 ± 1.0o e, which represents an amaz­
ingly good agreement with published values. 
(Klement and Cohen [1968] estimate 26°Cjkb 
and 574°e from their own work, that of Cohen 
and Klement [1967J, and that of others; cf. 

PRESSURE OR MEAN STRESS (kb) 

Fig. 7. Temperature intercepts T._po (obtained 
by extrapolating the a-fJ boundary to zero com­
pressive stress) plotted versus pressure (solid sam­
ples) or mean pressure (hollow samples, see Table 
2, Appendix A, and text). Open symbols are for 
hollow specimens, solid symbols are for solid 
specimens. Orientations are shown by circles 
( 1 G), squares (II G), and triangles (0). Ten points 
are not shown because they are obscured by the 
other points. 
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also Keith and Tuttle [1952J, 573 ± 2°C; 
Yoder [1950J, 29°C/kb; and Gibson [1928], 
21°C/ kb.) If the six points determined with 
the 0.05-cm thermocouples are omitted as being 
less reliable, the values change, and the uncer­
tainty decreases slightly to 25.82 ± 0.05°C/kb 
and 574.4 ± 0.8°C. Taking into account the 
uncertainty in absolute calibration of the pres­
sure and temperature, we feel that the best 
estimates from our measurements are 25.8 ± 
0.3°C/ kb and 574 ± 2°C. 

DISCUSSION 

The results show that the change in transi­
tion temperature due to the addition of com­
pressive stress depends on the orientation of 
the quartz crystal with respect to the compres­
sion axis as well as on the magnitude of the 
stress. In other words, the transition tempera­
ture T._~ can be regarded as a function of the 
compol1ents of stress a'i 0 that 

d'l'a_~ = (
aT a-~) -- . daii == - Mii daii 
aUii tTpEtTij 

(1) 

M .. = - (aT a-~) (2) 
1.J - au if u pdUi i 

where the summation convention over repeated 
indices is implied (i, j = 1, 2, 3) and the sign 
of a<i is positive for tension. Because T._~ is a 
scalar and a<i is a second rank symmetric tensor, 
M <i is a second rank symmetric tensor as well 
[see Nye, 1957]. In the case of hydrostatic 
pressure, da<1 = -dP for i = j and dati = 0 
for i =F j, so (1) yields 

dT a-~/ dP = Mll + M22 + M33 (3) 

In applying general theory to the specific 
situation in quartz, we change the sign con­
vention for convenience so that a is positive in 
compression, choose the tensor reference axes 
x., X" X. to coincide with the symmetry axes 
as in Figure 4, and impose the symmetry condi­
tions of a or f3 quartz. Equation 2 can then 
be written 

M2 = (aT a-~/aa)J.a 

M3 = (aT a-~/alJ")IIO 
(4a) 

Single subscripts are used in (4a) to inrucate 
that the diagonal components of M' I are prin-

cipal values when the normal stresses are ru­
rected perpendicular and parallel to the C axis. 
Because only two of the three principal values 
are unique for quartz, (3) simplifies to 

dT a-~/ dP = 2M} + M3 (4b) 

From our measured values Ml = 10.6 ± O.4°C/ 
kb and M. = 5.0 ± O.4°C/kb (Table 3) we 
obtain an estimate from (4b) of dT.-,/dP = 
26.2 ± 0.7°C/kb, which agrees within experi­
mental error with the value of 25.8 ± 0.3°C/kb 
that we determined directly on the same crystal 
by extrapolating the phase boundaries to condi­
tions of hydrostatic pressure (zero uniaxlal 
stress) for runs at various confining pressures 
(Figure 7). 

Special Aspects of the Results 

The effects of stress inhomogeneities. Non­
uniformities of stress in the specimen would 
smear the transition, and, if the stress were not 
symmetrically distributed about the nominal 
stress calculated from the applied load, sys­
tematic error would result. In all specimens 
stress inhomogeneities could arise from end ef­
fects, but in the hollow specimens we might 
expect additional inhomogeneity not related to 
end effects, because these cores are subjected 
to the confining pressure over the Quter cylin­
drical surface but to only one atmosphere over 
the internal surface. 

The stress rustribution in a hollow cylinder 
of homogeneous, anisotropic elastic material 
having hexagonal or trigonal symmetry arising 
from the application of unequal hydrostatic 
pressures to its inner and outer surfaces does 
not appear to have been explicitly calculated, 
but some of the characteristics of the distribu­
tion would be expected to be similar to the 
case for an isotropic material. In Appendix A 
we calculate the transition temperature at each 
point in such an isotropic, homogeneous speci­
men by summing the effects of the three prin­
cipal stresses. We find that T._~ would vary 
over the circular cross section of specimens of 
all orientations except II C (in which there 
would be no variation) in a symmetrical man­
ner about a mean value that would be the 
transition temperature for a solid specimen of 
the same orientation subjected to a confining 
pressure equal to the mean stress in the hollow 
specimen. The magnitude of the predicted varia-


